|
|
Untried Homopolar Generator Experiments(c)1996 William J. Beaty
The general idea was that an HPG might lack back-torque if the
rotor and stator circuits are radially symmetrical. If all wires were
replaced with cups and tubes, would the mechanical energy per output
wattage be reduced? If this were true, conservation of energy would be
violated. The generator would create large currents and heat output, yet
it would require little driving energy. If a pair of these was hooked
together in motor/generator configuration, they might self-accelerate
anomalously and spin without extrnal energy input. Impossible by standard
physics, of course. Yet a radially-symmetric HPG does not change flux
linkage when rotating, and so it might not be expected to produce output
currents. Yet it does. Tewari and Depalma in fringe-science publications
claim to have observed anomalous behavior when investigating these
devices. If there is a way to extract the energy of the quantum vacuum
sea, perhaps here is a device which accomplishes the feat. The pipecaps/mercury experiment was my crude attempt to detect changes
in electromagnetic braking in a shorted, symmetrical HPG. I hoped to
compare the braking forces with and without the permanent magnet present.
Unfortunately my setup didn't show low friction without the magnet, since
the oxide crust on the mercury contributed a large friction compared to
the EM braking effects. The crust/scum on the mercury gave such high
friction that I couldn't see any obvious difference between the magnet
version and the no-magnet version. To detect forces, I only relied on
twisting up the thread and making crude time measurements of the
unwinding. Later I realized that the crust could be eliminated. This
experiment needs to be repeated.
In thinking long and hard about HPGs, I have come up with some
observations and questions. Are you confused about spinning magnets
versus spinning disks? Here's more to think about. Perhaps it will
help to clarify things. The diagram below depicts a simplified Homopolar Generator (HPG).
Rather than using a separate external circuit and a spinning disk, I've
combined them into a two-disk arrangement. One half of the device in fig
1a is the "disk," of a classic HPG, while the other half acts as the
"external circuit." Carbon brushes connect the halves with sliding
contact. Liquid metal brushes would be better.
The two halves are placed together in fig 1b. When a magnetic field is
applied (vertical field in fig 1b) and the two halves are spun together as
a unit, the
relative motion of the metal and the magnetic field should cause a radial
voltage to appear, which causes the rim of the metal assembly to aquire a
positive charge, and the axis of the assembly to receive an equal negative
charge. No current appears, instead the device acts like a charged
capacitor as long as the rotation continues. Also, if the metal assembly
is held still and the magnets are spun instead, the same radial voltage
should appear and the same separation of charges should exist on the
object, again with a voltage only. There is a momentary separation of
charge, but no constant current. Fig 1c shows my idea of how HPGs are able to create electric currents.
If the upper and lower halves of the device are spun in opposite
directions, the polarity of the radial voltage and the radial separation
of charges should be opposite in each disk. Since the two halves are in
sliding contact, the positive and negative regions are in electrical
contact and a very large electric current should appear. This current is
zero if the two halves are spun together. It is large if one half spins
and the other is kept still. It is twice as large if both halves are spun
in opposite directions. However, any relative rotation of the
magnet, or the magnetic field, should result in equal voltages
radially across both halves, and therefore should create no relative
voltage between the halves, so rotating magnets should create no current.
In other words, the magnetic field might spin with the magnet or it might
not, but this cannot be detected by the HPG disks. The HPG doesn't care
if the magnet spins. Instead, it only cares about differing rotation of
the two metal parts. If you hold one half of the metal parts still and spin the other half,
you create a "classic" HPG having a spinning disk and a nonspinning
"external circuit." Simply add a current meter in series with the shaft
of the non-spinning half depicted above. You can even carve away most of
the shell of the non-spinning half and form it into "wires". You'll end
up with the "classic" HPG circuit in full. This then shows why the rotating copper parts might apply back-action
forces against the external circuit, but need not apply any forces against
the permanent magnet. It explains the seeming non-reversibility of
current-generating action in Faraday's homopolar experiment. It
appears that there is a paradox, and that the rotation of Faraday's disk generates
current, while rotation of his bar magnet does not. In reality, the only
important motion is the *relative* movement between Faraday's disk and his
external circuit, and the rotation of the magnet is unimportant. Of
course the presence of the magnetic field is necessary to accomplish the
effect and create current, but its rotation relative to the average
rotation of the disk-plus-circuit assembly only creates a net radial
charge separation without creating constant current. |
SOME REFERENCES: Faraday Paradox (WP) https://en.wikipedia.org/wiki/Faraday_paradox PDF papers at U. Texas Center for Electromechanics http://www.utexas.edu/research/cem/publications.html N-machines in nuclear submarines: the hunt for compact power http://www.memagazine.org/backissues/april00/features/hunt/hunt.html Earth's core simulated with rotating liquid metal http://physicsweb.org/article/news/4/5/4 IEI (Ireland) finds new Faraday Disk effect http://www.iei.ie/papers/faraday/faraday71.html, also some discussion THE HOMOPOLAR HANDBOOK: A definitive guide to faraday disk and N-machine technologies, by Thomas Valone, 1994. Published by Integrity Research Institute, 1377 K St. NW, Suite 204, Washington DC 20005 See bookstore Don Lancaster's "Tech Musings", tinaja.com site: - muse117.pdf, Shattering HPG Myths - muse121.pdf, Understanding Faraday's Disk Homopolar motor torque equation W. Johnson Gyro Force Theory: Faraday disk (.pdf) Delpalma's site http://depalma.pair.com/ Eric K's free energy EM skepticism Dr. I. Moroz current homopolar generator research Spinning Magnetic Fields, Jovan Djuric Journal of Applied Physics v48 #9 Sep 1977 p 3981 Comments on Spinning Magnetic Fields, A. Viviani Journal of Applied Physics v46 #2 Feb 1975 p 679 From CyberWorkshop: Homopolar Generator Principle (jap lang) HPGs I(jap lang) HPGs II (jap lang) HPGs III (jap lang) Graneau's EM forces, bibliography Fenyman Lectures on Physics, Vol II, Sect 3.10 PIRA PHYSICS DEMO K2-64: UNIPOLAR GENERATOR : R. J. Stephenson, Experiments with a Unipolar Generator and Motor, AJP 5, 108-110 (1937). Dale R. Corson, Electromagnetic Induction in Moving Systems, AJP 24, 126-130, ( 1956). David L. Webster, Relativity in Moving Circuits and Magnets, AJP 29, 262-268 (1961). Thomas D. Strickler, Variation of the Homopolar Motor, AJP 29, 635 (1961). A. K. Das Gupta, Unipolar Machines, Association of the Magnetic Field with the Field-Producing Magnet, AJP 31, 428-430 (1963). David L. Webster, Schiff's Charges and Currents in Rotating Matter, AJP 31, 590-597 (1963). Thomas Strickler, Motional emf's and the Homopolar Motor, AJP 32, 69, (1964). Little Stinkers: Electromagnetic Induction, TPT 4, 1966. R. Becker, "Electromagnetic Fields and Interactions, Blaisdell Pub. Co., 378-383, (1964). P. Lorrain and D. Corson, Electromagnetic Fields and Waves, W. H. Freeman, 338-343, 657-664, (1970). Robert D. Eagleton and Martin N. Kaplan, The radial magnetic field homopolar motor, AJP 56 #9, 858-859 (1988). Daniel F. Dempsey, The rotational analog for Faraday's magnetic induction law: Experiments, AJP 59, 1008-1011 (1991). J. Guala Valverde and P. Mazzoni, The principle of relativity as applied to motional electromagnetic induction, AJP 63 #3, 228-229 (1995). Gerald N. Pellegrini and Arthur R. Swift, Maxwell's equations in a rotating medium: Is there a problem?, AJP 63 #8, 694-705 (1995). Richard E. Berg and Carroll O. Alley, Unipolar Generator: A Demonstration of Special Relativity - Department of Physics and Astronomy, Univ. of MD- College Park. Aurthur I. Miller, Frontiers of physics, 1900-1911 Selected Essays: Unipolar Induction: A Case Study of the Interaction Between Science and Technology, 153-180, Birkhauser at Boston Panofsky and Phillips, Classical Electricity an Magnetism, pages 240, 342-345.